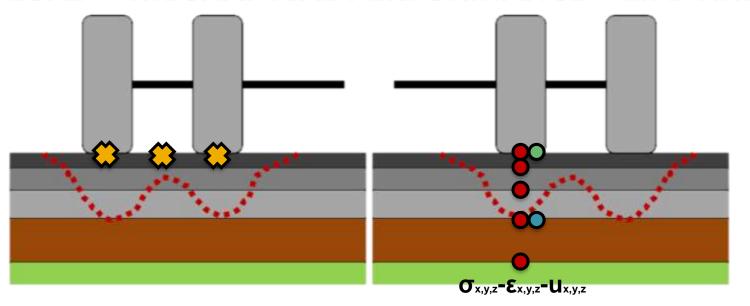


Polymer Modified Asphalt: Innovative Technology for High Durable Road Pavements Polimerom modificirani asfalt: Inovativna tehnologija za jako trajne cestovne kolnike

Luca Baccellieri, Interchimica


Innovative chemistry for road asphalt | www.iterchimica.com 1 11/04/2017

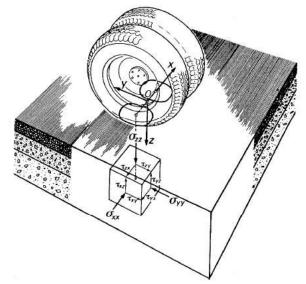
Pavement-Load

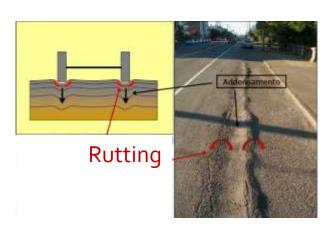
There is a tight connection between

LOAD – MECHANICAL PERFORMANCE – LIFE TIME

- Static and dynamic load;
- In function of the load and temperature is possible to check the tensile inside the pavement;
- Green spot -> Displacement -> Rutting phenomenon
- Blue spot -> Tensile Strain (ɛt) ->Fatigue phenomenon

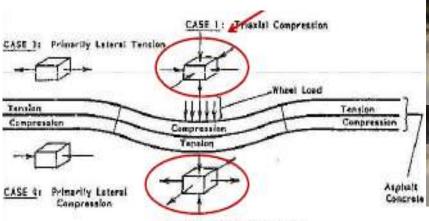
Innovative chemistry for road asphalt | www.iterchimica.com 2 11/04/201





Pavement-Load-Damage

FATIGUE CRACKING



RUTTING

Tensile strain

CASE 1: Vertical Compression Lateral Tension

BASE COURSE

WEARING COURSE

Innovative chemistry for road asphalt | www.iterchimica.com 3 11/04/2017

PMA Technologies

Compound of polymers and fibers

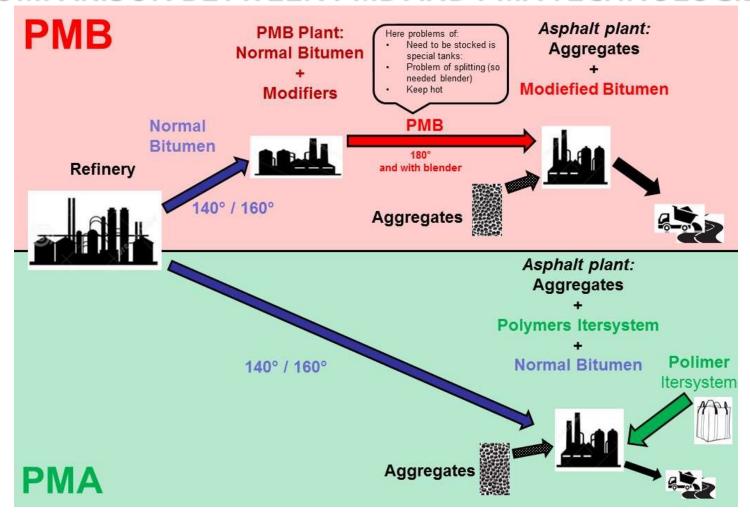
Compound of thermoplastic copolymers

Iterchimica ITERSYSTEM.mp4

ADDED DIRECTLY INTO THE MIXER

Possibility to adjust the modification degree of the mix design, changing the modifiers dosage

Innovative chemistry for road asphalt | www.iterchimica.com 4 11/04/2017



PMB vs PMA

COMPARISON BETWEEN PMB AND PMA TECHNOLOGIES

Innovative chemistry for road asphalt | www.iterchimica.com 5 11/04/2017

PMA Technologies

INNOVATIVE SOLUTION

SUPERPLAST ADDED INTHE MIXER

Possibility to choose the modifier and its relative quantities

SUPERPLAST IS A <u>POLYMERIC COMPOUND</u> OF SELECTED THERMOPLASTIC POLYMERS MADE OF FLEXIBLE GRANULES WHICH, WHEN ADDED TO THE ASPHALT MIX, <u>INCREASES THE PAVEMENT</u>

<u>STRENGTH, THE FATIGUE RESISTANCE</u>

Innovative chemistry for road asphalt | www.iterchimica.com 6 11/04/201

PMA Technologies

PPS (Polyfunctional Polymeric System)

- PLASTOMERS or ELASTOMERS
- **FIBERS**
- OTHER ADDITIVES

- Combination of the benefits;
- Increase of the resilience;
- Higher resistances for high thermal fluctuations;
- Intervention on more physicalmechanical characteristics.

HOT **WEATHER**

THERMAL FLUCTUATIONS

Innovative chemistry for road asphalt | www.iterchimica.com 7 11/04/2017

PMA Applications

The main application are:

- High Perfomance CA;
- SMA (Stone Mastic Asphalt)
- High Modulus Asphalt Layers (HiMA);
- Rut and crack resistant top layers for durable low maintenance pavements;
- Thin layer asphalt of various thicknesses;
- Airport runway surfacing for high performance and cost-effective maintenance

Innovative chemistry for road asphalt | www.iterchimica.com 8 11/04/20

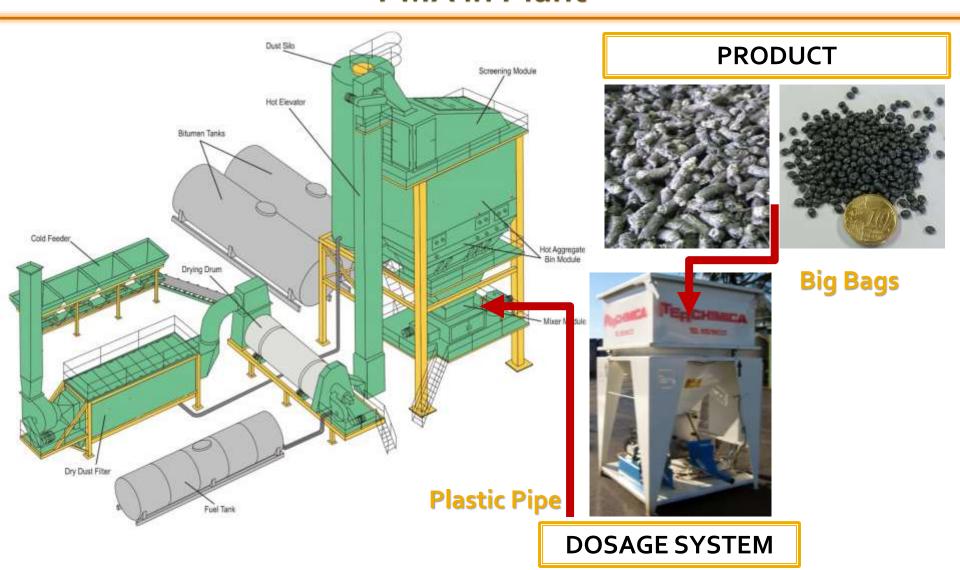
PMA in Plant

0,3÷0,6% 4÷8% **PMA** on bitumen weight on mix Polymers at room temperature Aggregates at Bitumen at 180°C 160°C

Mixer

Same equipments used in the traditional mixes

Innovative chemistry for road asphalt | www.iterchimica.com 9 11/04/2017


The herein information are based on our current knowledge and experience. They may not, imply warranty on our part, nor liability for the use of our products not being the conditions of employment under our control.

PMA in Plant

Innovative chemistry for road asphalt | www.iterchimica.com 10 11/04/2017

In the use of our products not being the conditions of employment under our control.

Benefits due to PMB and PMA Technologies

PARAMETER	РМВ	РМА
High stiffness MODULUS	\checkmark	\checkmark
Increase RUTTING resistance	\checkmark	\checkmark
Reduction vertical deformation	✓	\checkmark
Increase FATIGUE CRACKING resistance	\checkmark	\checkmark
Optimum DOSAGE in function of the mix		\checkmark
High MECHANICAL PROPERTIES	\checkmark	\checkmark
THERMAL FLUCTUATIONS CONDITION	\checkmark	\checkmark
SAVE ENERGY during the production		✓

Innovative chemistry for road asphalt | www.iterchimica.com 11 11/04/2017

PMB vs PMA

		PMA SUPERPL	AST al	PM	В	
D t	[00]	5%			40	
Penetrazione	[°C]	a)	53	요	48	
Rammollimento	[℃]	me Iale	48,4	me icat icat	85,3	
Indice di Penetrazione	[n]	Bitume Normale	-1,5	Bitume Modificato Hard	4,9	
Rottura Fraass	[℃]	B N	-9		-13	
Ritorno Elastico	[%]			1	90	
BITUME	[% su mix]	4,5	8	4,5	2	
Gsb	[g/cm3]	2,5	2	2,5	2	
Vuoti N1 = 10	[%]	10,	8	11,	9	
Vuoti N2 = 120	[%]	1,8	3	2,1		
Vuoti N3 = 200	[%]	0,9)	1,1		
				•		
ITS @ 25°C	[GPa x 10-3]	2,0)	1,4		
CTI @ 25°C	[GPa x 10-3]	267	7	172		
ITS @ 40°C	[GPa x 10-3]	0,6	j	0,7	7	
CTI @ 40°C	[GPa x 10-3]	64		70		
ITSR	[%]	91		96		
Vuoti 180 cicli	[%]	2,3	}	3,4	ļ	
Stiffness @ 20°C	[MPa]	8.67	'6	6.27	'1	
Stiffness @ 40°C	[MPa]	1.78	34	1.64	15	
Fatica: σ @ 0,2 N/mm2	[Cicli]	1.550.	000	900.0	000	
Fatica: σ @ 0,3 N/mm2	[Cicli]	456.5	500	237.5	500	
Fatica: σ @ 0,4 N/mm2	[Cicli]	98.9	82	54.5	00	
Fatica: σ @ 0.5 N/mm2	[Cicli]	46.5	00	12.0	00	

Per: anns ossoftpostacert stradegnes it

Anna SpA Società cun Socie Unico
Cap. Soc. E. 2568,892.000,00 – Iser. R.E.A. 1024951 – P. IVA 02133881003 – C.F. 80208450587
Sede legain: Via Montambaro, 10 – 00185 Roma – Tel. 06.44691 – Fax 08.4458224

Centro Sperimentale Stradale
Laboratorio Utilicate dello State – Legge 7 fribtraio 1958, n. 85 – 0, U. s. 80 del 06/03/1956
Via della Statenne di Casaro, 317 – 00123 Roma – Tel. 06.44691 – Fax 08.338595


 LABORATORIO PAVIMENTAZIONI
 ROP N.
 3693/0131/2015 Pt di 2.
 POGLIO
 1
 DI POGLI
 11

 Poziolando
 Barchierica a.r.J.
 Richesta s.
 #-stall
 Inidate
 25002/16

 Oggada: (7)
 Superplant
 Cestrato s.

 inidate
 25002/16

 Vatoro (7)
 A mazzo corriene
 Dotta accestacione designant
 62002/15

 Manor de crescolari?
 Consideracione designant
 62002/15

of load wcles

Innovative chemistry for road asphalt | www.iterchimica.com 12 11/04/2017

Case Histories

MORE THAN 4.000 Km (2010 - 2016) OF ROADS REALIZED WITH OUR POLYMERS

Some References:

2013 – ALGERIA 150 Km of highway

Highway RNo1 between Ksar El Boukhari and Boughzol

2. 2012 – ROMANIA 50 Km of National Road and highway

DN 79 Arad-Oradea and Costanta Highway

<u>3. 2016 – EGYPT Trial Section</u>

Cairo Alexandri Agricultural Road

<u>4. 2010 – LIBYA </u>240 km of Highways

Sebha-Brak Road and Libyan Coastal Highway

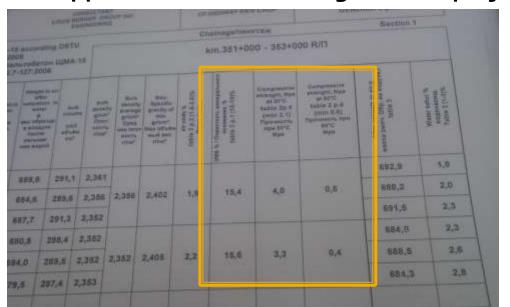
<u>5. 2016 – GREECE</u> 30 Km of Highway

Highway Egnatia – Odos

NO RUTTING PHENOMENA UNTIL TODAY

Innovative chemistry for road asphalt | www.iterchimica.com 13 11/04/2017

The herein information are based on our current knowledge and experience. They may not, imply warranty on our part, nor liability for the use of our products not being the conditions of employment under our control.


Case Histories-Ukraine

MIX DESIGN STUDY WITH SUPERPLAST and PROJECT

Reaching the limit of the Ukraine Technical Specifications using POLYMERIC compound added directly in the mixer for bituminous mixes resistant to **LOW** temperatures:

- Goal: Certification of the compound for projects in Ukraine;
- Approval of the Mix Design for the project

Highway Mo6 Kyiv Chop

Innovative chemistry for road asphalt | www.iterchimica.com 14 11/04/2017

Case Histories-Ukraine

Mo6 Kyiv-Chop

SUPERPLAST-ITERFIBRA C/PLUS-ITERLOW T-ITERLENE IN 400 S

More than 180 Km

Mo3 Kiev- Karkhiv - Dovzhanskiy SUPERPLAST-ITERFIBRA C/PLUS-ITERLOW TITERLENE IN 400 S

More than 120 Km

Innovative chemistry for road asphalt | www.iterchimica.com 15 11/04/2017

CERTIFICATION SUPERPLAST and PROJECTS

Reaching the limits of the Romanian Technical Specifications using POLYMERIC compound added directly in the mixer for highway projects:

- Bituminous mix type BDM o/25;
- Bituminous mix type BC o/16;

REALIZATION OF DIFFERENT HIGHWAY SECTIONS

- <u>A2</u>

Crossing of climatic areas very different

> POLYMER COMPOUND

682 km - WEARING COURSE AND BINDER

Innovative chemistry for road asphalt | www.iterchimica.com 16 11/04/2017

DBM o/25: Performances obtained

DBM o/25 mm with 5% on bitumen of COMPOUND OF POLYMERS - Compaction with gyratory press, EN 12697-31

Characteristics	UM	Typical values	Technical Specifications	Test method
Voids at 120 cycles	%	3,6	≤ 9,5	EN 12697-31
Stiffness modulus, T = 15°C and f = 2 Hz	MPa	10 300÷10 800	≥ 4 000	EN 12697-26
Dynamic Creep, T = 40°C and 1800 pulses of 200 kPa: Deformation Deformation speed	mm/m mm/m/cycle	2 815÷3 642 0,13÷0,12	≤ 20 000 ≤ 2,00	EN 12697-25
Fatigue resistance , T = 15°C	Number of cycles at breaking	> 420 000	≥ 400 000	EN 12697-24-A1

Innovative chemistry for road asphalt | www.iterchimica.com 17 11/04/201

BC o/16: Performances obtained

BC o/16 mm with 5% on bitumen of COMPOUND OF POLYMERS — Compaction with gyratory press, EN 12697-31

Characteristics	UM	Typical values	Technical specifications	Test method
Apparent density	Kg/m³	2 367	≥ 2 350	EN 12697-6-A1
Voids at 8o cycles	%	4,0	≤ 5,0	EN 12697-31
Stiffness modulus, T = 15°C and f = 2 Hz	MPa	7 350÷8 850	≥ 4 500	EN 12697-26
Dynamic Creep, T = 40°C and 1800 pulses of 200 kPa: - Deformation - Deformation speed	mm/m mm/m/cycle	13 600÷14 800 1,03÷0,96	≤ 25 000 ≤ 2,50	EN 12697-25
Rutting test - PRD _{AIR} - WTS	% Mm/1000 cycle	< 6,8 < 0,07	≤ 7,0 ≤ 0,7	EN 12697-22

Innovative chemistry for road asphalt | www.iterchimica.com 18 11/04/2017

DN 79 Arad-Oradea

COMPOUND OF POLYMERS – ITERFIBRA C/PLUS – ITERLENE IN 400 S

More than 100 Km

Costanta Highway COMPOUND OF POLYMERS – ITERFIBRA C/PLUS – ITERLENE IN 400 S More than 30 Km

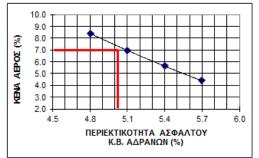
Innovative chemistry for road asphalt | www.iterchimica.com 19 11/04/2017

Case Histories-Greece

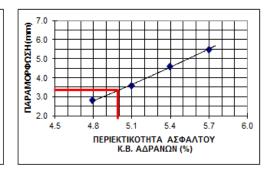
Highway Egnatia - Odos More than 30 Km

COMPOUND OF POLYMERS

Innovative chemistry for road asphalt | www.iterchimica.com 20 11/04/2017



Case Histories-Greece


% ΑΣΦΑΛΤΟΣ	% KENA	ΦΑΙΝΟΜΕΝΗ ΠΥΚΝΟΤΗΤΑ	EYΣTAΘEIA [KN]	ΠΑΡΑΜΟΡΦΩΣΗ [mm]	VMA	VFB
4,8	8,4	2,403	10,13	2,8	19,19	56,5
5,1	7,0	2,423	11,60	3,6	18,66	62,4
5,4	5,6	2,448	9,32	4,6	18,04	69,2
5,7	4,4	2,464	7,89	5,5	17,71	75,0

5% optimal bitumen content

- 1. 7,5% of Air Voids at 5% optimal bitumen content (Specification limits between 5% to 10%);
- 2. 11 KN Marshall Stability at 5% optimal bitumen content;
- 3. 3,4 mm Flow at 5% optimal bitumen content;

< 7 mm Ruth Depth Under Specification

Innovative chemistry for road asphalt | www.iterchimica.com 21 11/04/2017

Case Histories-Serbia

Official Laboratory of the Polytechnic in Milan

	SMA Pmb	SMA Superplast			
Fraction 8/11 mm [%]	32	2.0			
Fraction 4/8 mm [%]	38	3.5			
Fraction 0/2 mm [%]	12	2.2			
Filler [%]	11.3				
Iterfibra C–Plus (on mix) [%]	0.4	0.4			
Bitumen (on mix) [%]	5.6 (Pmb)	5.6 (Neat Bitumen)			
Superplast (on bitumen) [%]	-	4.5			
Iterlene PE 31-F (on bitumen) [%]	-	0.15			

Performances obtained are completely EQUIVALENT

TEST	PARAMETHER	SMA PMB	SMA SUPERPLAST
	Stiffness Modulus at 5°C [MPa]	10.183	10.959
DETERMINATION OF STIFFNESS MODULUS	Stiffness Modulus at 20°C [MPa]	3.752	5.285
	Stiffness Modulus at 40°C [MPa]	1.282	1.665
DETERMINATION OF	Rut Depth at 10000 cycles [mm]	1,71	2,18
RUTTING RESISTANCE	PRD _{air 10000} [%]	2,9	3,7
DETERMINATION OF RESISTANCE TO FATIGUE	Number of Cycles [%]	2.147.192	2.583.048

Innovative chemistry for road asphalt | www.iterchimica.com 22 11/04/2017

Case Histories-Italy

Milano Malpensa International Airport

SUPERPLAST

Runways

<u>Italian Highways – Pavia-Bereguardo</u>

Innovative chemistry for road asphalt | www.iterchimica.com 23 11/04/2017

Croatia References

Tablica A2: Najviše dopuštene temperature uskladištenog bitumena

Vrsta bitumena	Tip bitumena	Najviša dopuštena temperatura, °C	1
	20/30	200	T
	35/50	190	
Cestograđevni bitumen	50/70	180	ŀ
	70/100	180	ŀ
	160/220	170	
	10/20	200	ŀ
Tvrdí cestograđevní bitumen	15/25	200	\prod
	10/40-65	190	1
	25/55-55	180	
Polimerom modificirani bitumen	45/80-65	180	
and the second s	45/80-55	180	
	40/100-65	180	

olimerom modificiranog bitumena

HRN FN 14023

	100				пк	IN EI	1 140	23							
	180 170									Tip)				
	200		spitna norma	10	40-65	25/	55-55	45/	80-55	45	6/80-65	40	/100-65	90/	150-45
	200		IOI IIIa	Raz.	Zahtjev	Raz.	Zahtjev	Raz.	Zahtjev	Raz.	Zahtjev	Raz.	Zahtjev	Raz.	Zahtjev
	190		N EN 1426	2	10 - 40	3	25 - 55	4	45 - 80	4	45 - 80	5	40 - 100	8	90 - 150
	180 180		N EN 1427	5	≥ 65	7	≥ 55	7	≥ 55	5	≥ 65	5	≥ 65	9	≥ 45
	180		EN 13703 i	6	≥ 2		-	-	-	-	-	-	-		
	180		EN 13589		-	2	≥ 3	2	≥ 3	2	≥ 3	2	≥ 3	2	≥ 3
5.2.8.2	Točka paljenj	ja, °C	HRN EN ISO 2592	2	≥ 250	2	≥ 250	2	≥ 250	2	≥ 250	2	≥ 250	2	≥ 250
5.2.8.3	Gustoća na 29 kg/m³	5 °C,	HRN EN 15326		navesti		navesti		navesti		navesti		navesti		navesti
	Točka loma p Fraassu, °C	0	HRN EN 12593	3	≤ -5	5	≤ -10	6	≤ -12	7	≤ -15	7	≤ -15	8	≤ -18
Tablica 2	°C, % (*)	at na 25	HRN EN 13398	5	≥ 50	5	≥ 50	4	≥ 60	2	≥ 80	2	≥ 80	2	≥ 80
Tablica 2	Stabilnost	Δ PK, °C	HRN EN 13399 i HRN EN 1427	2	≤ 5	2	≤ 5	2	≤ 5	2	≤ 5	2	≤ 5	2	≤ 5
	pri skladištenju	Δ Pen,	HRN EN 13399 i	0	NR	0	NR	0	NR	0	NR	0	NR	0	NR

PMA technology

Using the PPS (Polymer-Fiber) is possible to guarantee these parameters (Table F3)

LABORATORY TESTS

	1		l					l	-		<u>-</u>		2		
5.2.8.3	Gustoća na 2! kg/m³	5 °C,	HRN EN 15326		navesti		navesti		navesti		navesti		navesti		navesti
	Točka loma po Fraassu, °C		HRN EN 12593	3	≤ -5	5	≤ -10	6	≤ -12	7	≤ -15	7	≤ -15	8	≤ -18
Tablica 2	°C, % (a)	at na 25	HRN EN 13398	5	≥ 50	5	≥ 50	4	≥ 60	2	≥ 80	2	≥ 80	2	≥ 80
Tabilica 2	Stabilnost	ΔPK, °C	HRN EN 13399 i HRN EN 1427	2	≤ 5	2	≤ 5	2	≤ 5	2	≤ 5	2	≤ 5	2	≤ 5
	pri skladištenju	Δ Pen, 0,1 mm	HRN EN 13399 i HRN EN 1426	0	NR	0	NR	0	NR	0	NR	0	NR	0	NR
Otporno	st na otvrdr	njavanj	e (HRNEN 1260	(7-1)											
Otporno	Promjena ma %(m/m)		e (HRN EN 1260 HRN EN 12607-1) 7-1) 3	≤ 0,5	3	≤ 0,5	3	≤ 0,5	3	≤ 0,5	3	≤ 0,5	3	≤ 0,5
Otporno 5.2.6	Promjena ma %(m/m) Zadržana penetracija,	se,	1			3	≤ 0,5 ≥ 55								
	Promjena ma %(m/m) Zadržana	se,	HRN EN 12607-1	3	≤ 0,5		,	_		_		_			,
	Promjena ma %(m/m) Zadržana penetracija, ! Porast točke	se, %	HRN EN 12607-1 HRN EN 1426	3	≤ 0,5 ≥ 55	6	≥ 55	6	≥ 55	6	≥ 55	6	≥ 55	6	≥ 55

Innovative chemistry for road asphalt | www.iterchimica.com 24 11/04/2017
The herein information are based on our current knowledge and experience. They may not, imply warranty on our part, nor liability for the use of our products not being the conditions of employment under our control.

Croatia references - PMA solution

Tablica A2: Najviše dopuštene temperature uskladištenog bitumena

Vrsta bitumena	Vrsta bitumena Tip bitumena			
	20/30	200		
	35/50	190		
Cestograđevni bitumen	50/70	180		
	70/100	180		
	160/220	170		
~ · · · · · · · · · · · · · · · · · · ·	10/20	200		
Tvrdi cestograđevni bitumen	15/25	200		

	Tipovi asfaltbetona za habajuće slojeve							
Asfaltbe	ton za habajuće slojeve	M1-E	M2-	-E	м3-Е	M4-E	3	
HRN EN 13108-1 (empirijski pristup)		AC 11 surf	AC 8 s		AC 8 surf AC 11 surf	AC 4 surf AC 8 surf AC 11 surf AC 16 surf	A 8 4 11 4 16	
	Primjenska oznaka smjese agregata	AG1	AG1, AG	2, AG5	AG1 do AG4	AG1 do AG4, AG9 (d)	10	
Sastavni	Cestograđevni bitumen	-	35/50) ^(e)	35/50 50/70 70/100	50/70 70/100 160/220	ī4	
materijali	Polimerom modificirani bitumen	25/55-55 45/80-65 45/80-55	25/55 45/80 45/80	-65	25/55-55 45/80-65 45/80-55	-		
	Reciklažni asfaltni agregat	nije dopušten			dopušten	dopušten		
	Fizikalno-meha	nička svojstva i	bitumensi	ke mješ	avine			
Točka 5.2.2 (a)	Udio šupljina, V	$V_{min3,5}$	V _{min} :	3,5	$V_{\min 3}$	V _{min 2,5}		
10CKa 5.2.2	% (V/V)	V_{max6}	V _{max6}		V _{max6} V _{max6} V _{maxS,S}		nin4	
Točka 5.3.3 (a)	Ispuna šupljina bitumenom, VFI	VFB _{minNR}	VFB _m	InNR	VFB _{min65}	VFB _{min70}	nax7	
10CKa 5.5.5	(%)	VFB _{maxNR}	VFB _m	axNR	VFB _{max83}	VFB _{max86}	minNR	
Točka 5.2.4 ^(b)	Najmanji omjer indirektne vlačne čvrstoće, ITSR (%)	ITSR ₈₀	ITSR	lao	ITSR ₈₀	ITSR ₇₀	maxNR	
Točka 5.2.6 ^(c) Tablica 8	Najveća brzina deformacije, WTS _{AIR} , (mm/10° ciklusa)	WTS _{AIR 0,07}	WTS _{AIR}	R 0,07	W7	S _{AIR NR}),6	
Točka 5.2.6 ^(c) Tablica 9	Najveća relativna dubina kolotraga, <i>PRD_{AIR}</i> (%)	PRD _{AIR 7,0}	PRD₄		DD	n	R ₇₀	
Točka 5.3.4	Najmanji udio šupljina u agregatu VMA _{min} , % (V/V)			V	MA _{minNR}		UR 0,05	
Točka 5.2.5	Otpornost na abraziju gumama s čavlima, Abr _s , (ml)				Abrue		uR S,O	

Mechanical performance like a modify bitumen

PMA technology

Using the **PPS or Polymers is**possible to guarantee these
parameters

Innovative chemistry for road asphalt | www.iterchimica.com 25 11/04/2017

Croatia References

Considering the mechanical performance is possible to improve the limits inside the references with dynamic tests and introduce the PMA solution like in Italy, Romania, etc.

Base course with modify bitumen

T=5°C, Def.=7µm, Freq.=2Hz, Coeff.P.=0.35	MPa	10.000-16.000
T=20°C, Def.=7µm, Freq.=2Hz, Coeff.P.=0.35	MPa	4.000-7.000
T=40°C, Def.=7µm, Freq.=2Hz, Coeff.P.=0.35	MPa	600-1.500

Base course with polymers

Caracteristica

deformația la 40 °C, 200KPa și 10000 impulsuri, μm/m, maxim

Rezistența la oboseală, proba cilindrică solicitată la întindere indirectă: Număr minim de cicluri până la fisurare la 15°C

Rezistenta la oboseala, epruvete trapezoidale sau prismatice

Caracteristici pe cilindrii confectionați la presa giratorie

viteza de deformație la 40 °C, 200KPa și 10000 impulsuri,

Rezistenta la deformații permanente (flua) dinamic)

Modulul de rigiditate la 20 °C, 124 ms, MPa, minim

Volum de goluri, la 120 girații,% maxim

T=5°C, Def.=7µm, Freq.=2Hz, Coeff.P.=0.35	MPa	12.000-21.000	14.000-25.000
T=20°C, Def.=7µm, Freq.=2Hz, Coeff.P.=0.35	MPa	5.000-8.000	7.000-12.000
T=40°C, Def.=7µm, Freq.=2Hz, Coeff.P.=0.35	MPa	600-2.000	800-4.000

Low dosage High dosage Tabelul 17 - Caracteristicile mixturilor pentru stratul de legătură determinate prin încercări dinamice

pentru s lega	tratul de tura	
I-II	III-IV	
9,5	10,5	
000	30 000	
2	3	Art.36, În v

4500

300 000

250

MIXTURI ASFALTICE EXECUTATE LA CALD CONDITIE TERMICE PRIVING PROIECTAREA, PREPARAREA SECTIUNEA 4 SI PUNEREA IN OPERA Aditivi

vederea atingerii performantelor mixturilor asfaltice, la nivelul cerintelor, se pot utiliza aditivi, cu caracteristici declarate, evaluati în conformitate cu legislatia în vigoare. Acesti aditivi pot fi adaugati fie direct in bitum, cum sunt de exemplu agentii de adezivitate sau aditivii de mărire a lucrabilității, fie în mixtura asfaltică, cum sunt de exemplu fibrele minerale sau organice, polimerii, etc.

nnovative chemistry for road asphalt | www.iterchimica.com 26 11/04/2017 The herein information are based on our current. Knowledge and experience. They may not, imply warranty on our part, nor liability for the use of our products not being the conditions of employment under our control

T=5°C, Def.=7µm, Freq.=2Hz, Coeff.P.=0.35	MPa	12.000-21.000	14.000-25.000
T=20°C, Def.=7μm, Freq.=2Hz, Coeff.P.=0.35	MPa	5.000-8.000	7.000-12.000
T=40°C, Def.=7µm, Freq.=2Hz, Coeff.P.=0.35	MPa	600-2.000	800-4.000

20 000

5000

400 000

Mixtură asfaltică

GARA LAVORE ONE COVERS Capitalists Specials d'Appartis SPECIFICHE TECNICHE

NORMATIV

Area Manutenzione Opere Stradali e Civilli

BATTE: AUTOSTRADA ASO TANGENZIALE OVES DI HILANO E PERTIMENZE

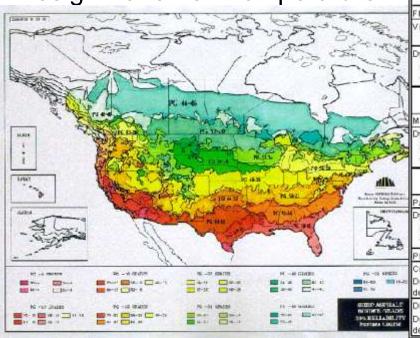
ROMANIA

Nr.

crt.

2.

Deformația Eº la 10º cicluri. 10-6


um/m/ciclu, maxim

Pavement-Temperature

PG 58 - 22 --- Min Design Pavement temperature

Max

Design Pavement temperature

Performance Grade		PG 70					PG 76					PG 82				
The state of the s	10	16	22	28	34	40	10	16	22	28	34	10	16	22	28	34
Average 7-day Maximum Pavement Design Temperature, [®] C [®]	< 70							< 76			- 0	< 82			ž	
Minimum Pavement Design Temperature, [#] C [#]	-10	-16	-22	-28	-34	-40	-10	-16	-22	-28	-34	-10	-16	-22	- 28	-3
			ORIG	INA	L BI	NDE	R				2					
Flash Point Temp, T 48, Minimum (*C)	230															
Viscosity, ASTM D 4402. [®] Maximum, 3 Pa*s, Test Temp, [®] C	135															
Dynamic Shear, TP 5. [®] G*/sin5 [®] , Minimum, 1.00 kPa TestTemp @ 10 rad/s, [®] C	70						76					82				
ROLI	ING	тн	IN FI	LM (OVE	NRE	SID	UE (T 240	0)						
Mass Loss, Maximum, percent								1.	00							
Dynamic Shear, TP 6: G*/sin6*, Minimum, 2.20 kPa TestTemp @ 10 rad/s, *C	70						76					82				
PRES	ssu	RE A	AGIN	G VE	SSE	EL RI	ESIC	UE	(PP 1	1)						
PAV Aging Temperature, [®] C [®]			100	(110)				10	0 (1	10)			10	0 (1	10)	
Dynamic Shear, TP 5: G*sir6 ¹ , Maximum, 5000 kPa TestTemp @ 10 rad/s, *C	34	31	28	25	22	19	37	34	31	28	25	40	37	34	31	28
Physical Hardening [®]								Re	port							
Creep Stiffness, TP 1 Determine the critical cracking temperature as described in PP 42	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	0	-6	-12	- 18	-2
Direct Tension, TP 3 Determine the critical cracking temperature as described in PP 42	0	-6	-12	-18	-24	-30	0	-6	-12	-18	-24	0	-6	-12	- 18	-2

Innovative chemistry for road asphalt | www.iterchimica.com 27 11/04/2017

Pavement-Temperature

Innovative chemistry for road asphalt | www.iterchimica.com 28 11/04/2017

Pavement-Temperature

The temperature range can be compare with others European Country close to Croatia

Innovative chemistry for road asphalt | www.iterchimica.com 29 11/04/2017

The herein information are based on our current knowledge and experience. They may not, imply warranty on our part, nor liability for the use of our products not being the conditions of employment under our control.

Thanks for your attention

Hvala na pažnji

Eng. Luca Baccellieri luca.baccellieri@iterchimica.it

Innovative chemistry for road asphalt | www.iterchimica.com 30 11/04/2017

